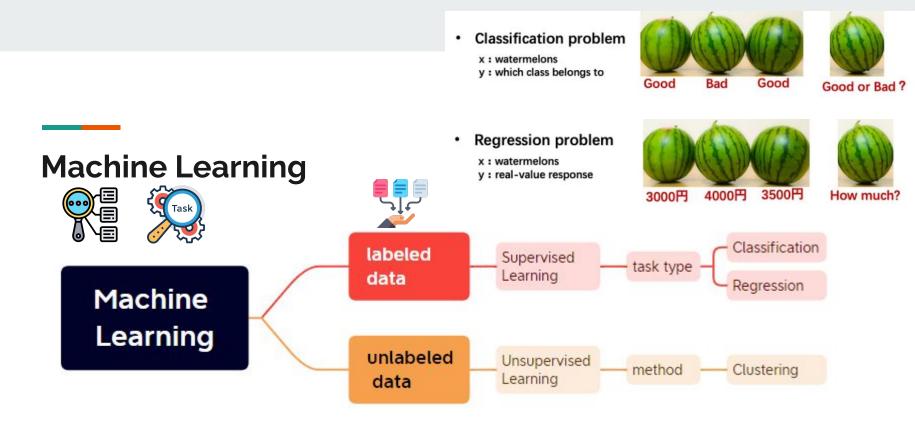
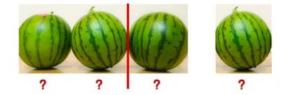
LOPS: Learning Order Inspired Issue Pseudo-Label Selection for Weakly Supervised Text Classification

Advisor : Jia-Ling, Koh

task

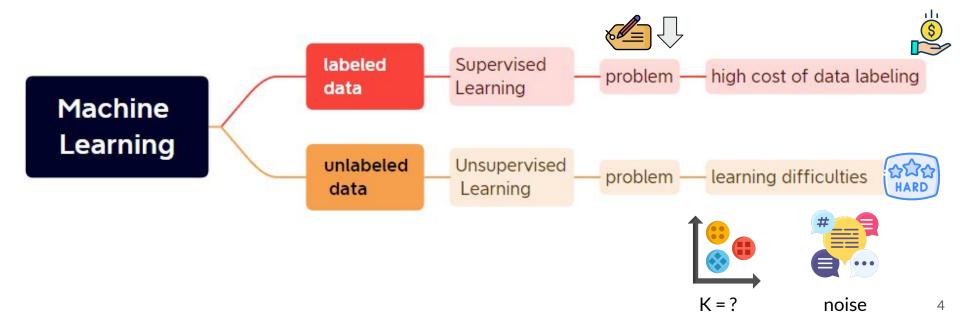

Speaker : Ting-I, Weng

Source : ACL'22

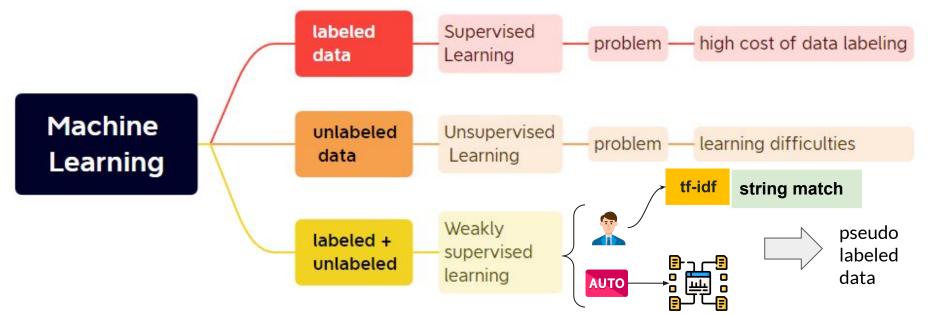

Date : 2023/10/17

Outline

- Introduction
- Method
- Experiment
- Conclusion



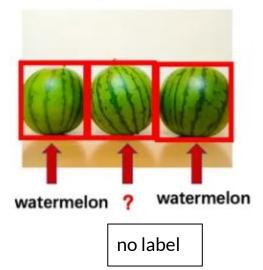
- Clustering problem
 - x:watermelons y:?



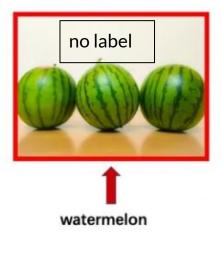
3

Supervised & Unsupervised Learning Challenge

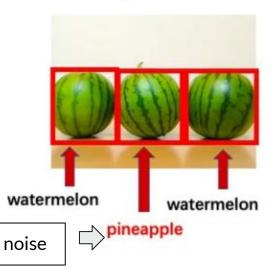
Weakly supervised learning

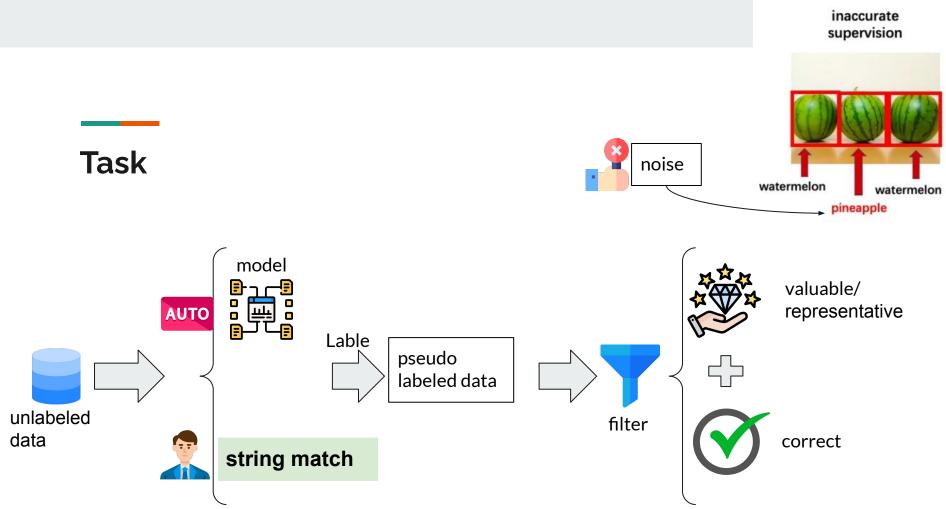


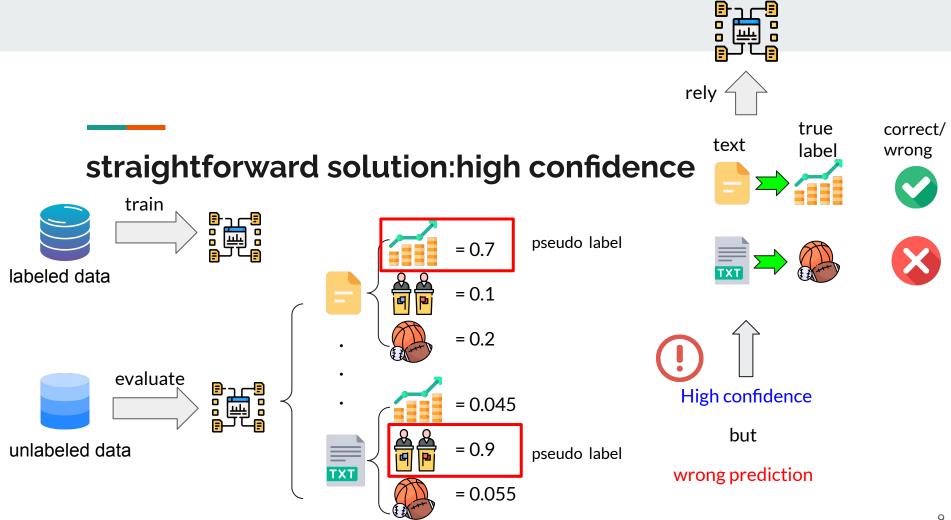
Weakly supervised learning

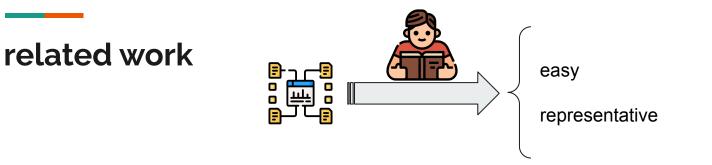


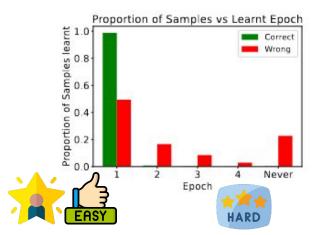
Weakly supervised learning

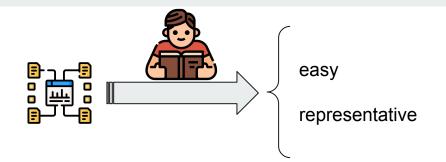

incomplete supervision



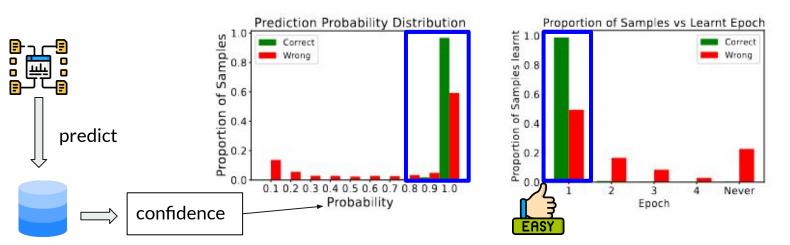

inexact supervision



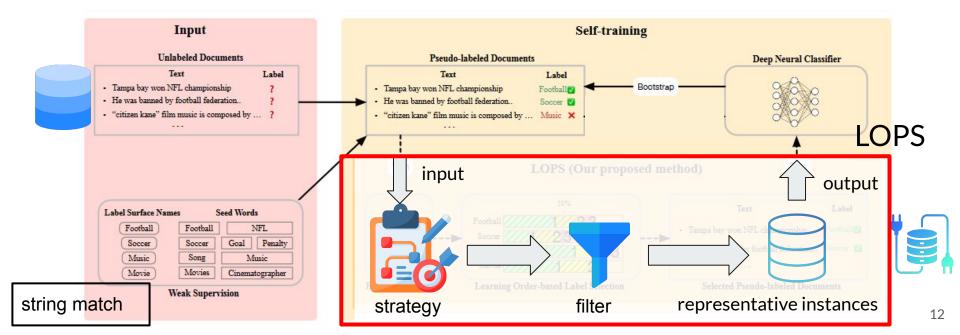

inaccurate supervision



- epoch1
 - learn most of the representative instances

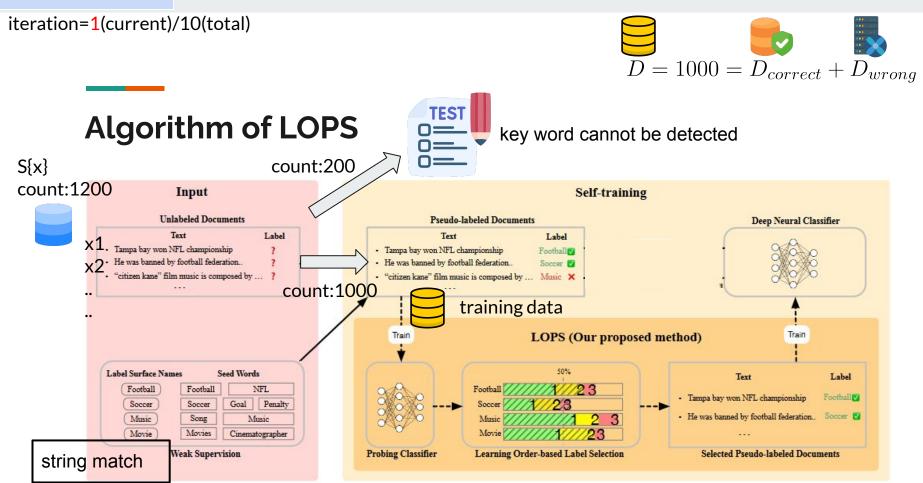

• other epoch

• learn wrong instances



hypothesize

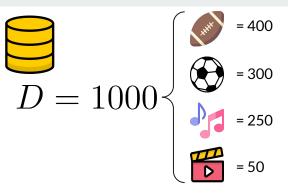
- learning order
 - be able to filter out most of wrongly labeled samples



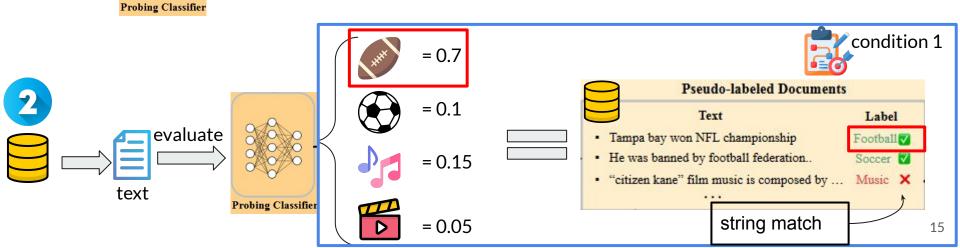
LOPS: Learning Order Inspired Pseudo-Label Selection

Outline

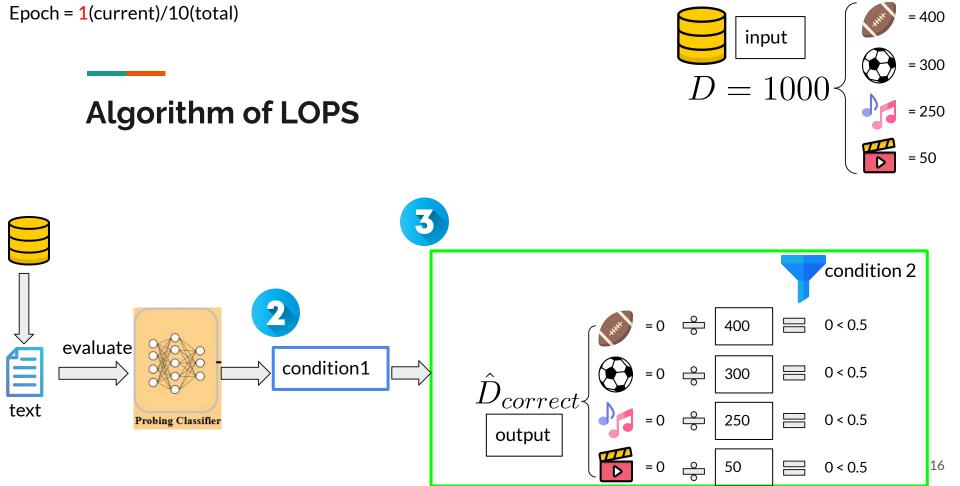
- Introduction
- Method
- Experiment
- Conclusion



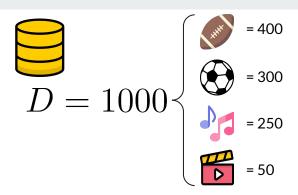
Epoch = <mark>1</mark>(current)/10(total)

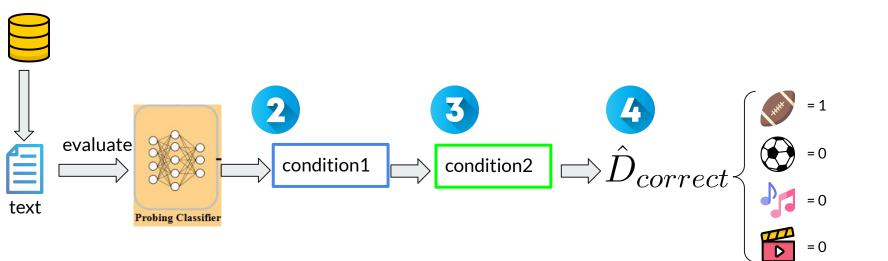

\equiv	Tampa bay won I

Tampa bay won NFL championship


text

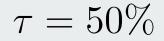
Algorithm of LOPS Horizontal Strain

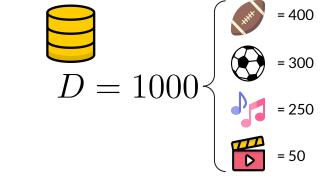


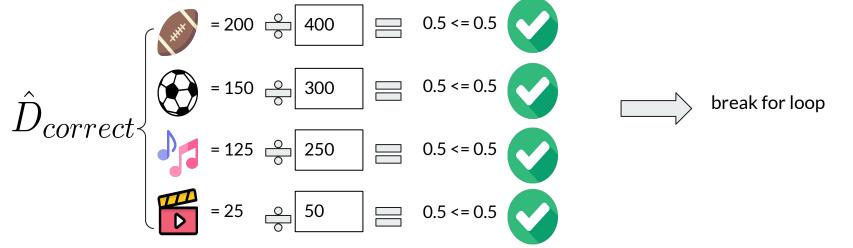

 $\tau = 50\%$

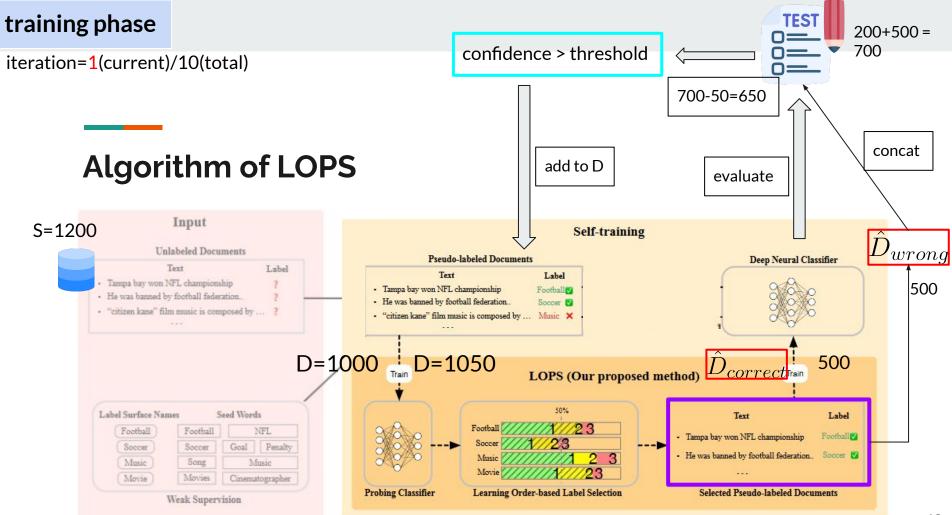
Epoch = 1(current)/10(total)

Algorithm of LOPS

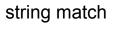



Epoch = 3(current)/10(total)


Algorithm of LOPS


current

total



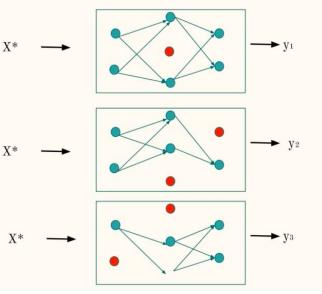
Outline

- Introduction
- Method
- Experiment
- Conclusion

Dataset

- New York Times
 - science, sports, music.. 0

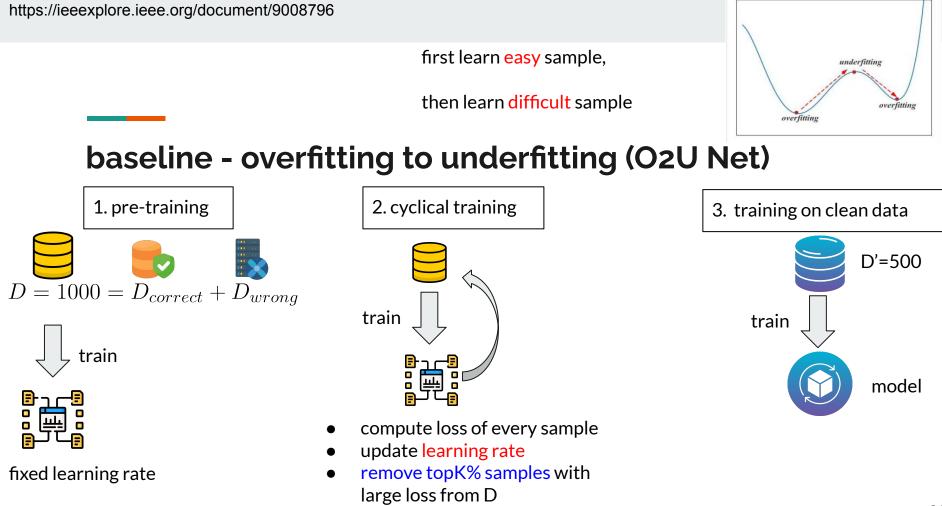
20Newsgroups •


computers, baseball... 0

AGNews •

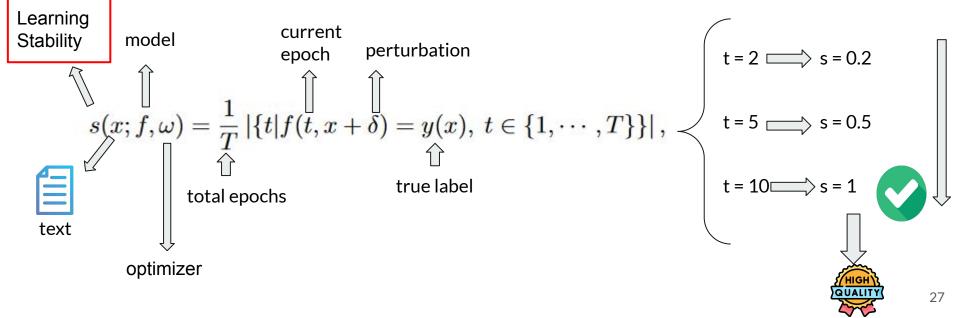
business, sports... Ο

Dataset	# Docs	# labels	Noise Ratio(%)
NYT-Coarse	13,081	5	11.47
NYT-Fine	13,081	26	31.80
20News-Coarse	17,871	5	12.50
20News-Fine	17,871	17	25.67
AGNews	120,000	4	16.26
Books	33,594	8	37.32


baseline - label selection methods

- Entropy
 - uses entropy to compute uncertainty scores
- Probability
 - use the prediction probabilities corresponding to pseudo-labels in descending orde and select the number of samples
- Random
 - is similar to Probability, however use random select the samples
- Monte-Carlo Dropout (MC-Dropout)
 - Uncertainty estimates for probability score calculations

Query-Strategy -	Query-Strategy - Least Confident											
	$\hat{y} = argmax_y P_{\theta}(y x)$	$x_{LC}^* = \underset{x}{argmax} \ 1 - P_{\theta}(\hat{y} x)$										
unlabel class A: 0.93 class B: 0.05 class C: 0.02	$\hat{y} = 0.93$	$x_{LC}^* = 1 - 0.93 = 0.07$										
unlabel class A: 0.55 class B: 0.35 class C: 0.1	$\hat{y}=0.55$ Confident $igcap$ uncertain $igcap$	$x_{LC}^* = 1 - 0.55 = 0.45$										

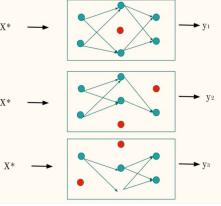

Query-Strateg	Query-Strategy - Entropy												
	$log P_{\theta}(y_i x)$	$P_{\theta}(y_i x) log P_{\theta}(y_i x)$	$x_E^* = \underset{x}{argmax} - \sum_i P_{\theta}(y_i x) log P_{\theta}(y_i x)$										
unlabel	class A: -0.104 class B: -4.321 class C: -5.6438	<pre>class A: -0.09672 class B: -0.21605 class C: -0.11287</pre>	-(0.09672+0.21605+ 0.11287) = -0.4256 $x_E^* = -(-0.4256) = 0.4256$										
unlabel	class A: -0.8624 class B: -1.5145 class C: -3.3219	∠ class B: -0.53007	-(0.47432+0.53007+ 0.33219) = -1.33658 $x_E^* = -(-1.33658) = 1.33658$ entropy incertain in 25										

https://arxiv.org/abs/2102.07437

baseline - Learning Stability

- metric
 - Micro-F1
 - Macro-F1

Experiment


		Coarse-grained Datasets									Fine-grained Datasets			
		NYT-	Coarse	20News-Coarse		AGNews		Books		NYT-Fine		20News-Fine		
Classifier	Method	Mi-F1	Ma-F1	Mi-F1	Ma-F1	Mi-F1	Ma-F1	Mi-F1	Ma-F1	Mi-F1	Ma-F1	Mi-F1	Ma-F1	
wi	Standard LOPS									77.2(0.36) 84.3(0.54)	71.6(0.43) 81.6(0.34)	70.0(0.30) 73.8(0.61)	69.6(0.25) 72.7(1.00)	
BERT														

- standard : all data with noisy
- LOPS : strategically select representative samples

Experiment

				Fine-grained Datasets									
		NYT-Coarse		NYT-Coarse 20News-Coarse		AGNews		Books		NYT-Fine		20News-Fine	
Classifier	Method	Mi-F1	Ma-F1	Mi-F1	Ma-F1	Mi-F1	Ma-F1	Mi-F1	Ma-F1	Mi-F1	Ma-F1	Mi-F1	Ma-F1
WIN	LOPS	94.6(0.36)	88.4(0.50)	81.7(1.00)	80.7(0.43)	79.5(0.86)	79.5(0.58)	57.7(0.87)	59.5(0.46)	84.3(0.54)	81.6(0.34)	73.8(0.61)	72.7(1.00)
BERT													
Г	Random	90.3(0.47)	80.9(0.47)	79.0(1.00)	76.8(1.50)	76.3(0.35)	76.3(0.65)	56.1(0.18)	58.2(0.35)	78.4(0.94)	71.7(0.47)	71.4(0.50)	70.6(1.00)

• LOPS are strategic

X*

X*

Experiment

					Fine-grained Datasets								
		NYT-Coarse		20News-Coarse		AGNews		Books		NYT-Fine		20News-Fine	
Classifier	Method	Mi-F1	Ma-F1	Mi-F1	Ma-F1	Mi-F1	Ma-F1	Mi-F1	Ma-F1	Mi-F1	Ma-F1	Mi-F1	Ma-F1
WIN	LOPS	94.6(0.36)	88.4(0.50)	81.7(1.00)	80.7(0.43)	79.5(0.86)	79.5(0.58)	57.7(0.87)	59.5(0.46)	84.3(0.54)	81.6(0.34)	73.8(0.61)	72.7(1.00)
	MC-Dropout	89.3(0.41)	79.3(0.45)	80.7(0.17)	77.7(0.24)	75.8(0.34)	75.0(0.41)	55.1(0.15)	56.7(0.61)	72.1(0.74)	69.0(0.41)	68.0(0.21)	68.7(0.26)
BERT													

- MC-dropout : probability score •
- LOPS : learning order

- high standard deviations are highlighted in blue
- low performances are highlighted in red

Experiment

					Fine-grained Datasets								
		NYT-	Coarse	e 20News-Coarse		AGNews		Books		NYT-Fine		20News-Fine	
Classifier	Method	Mi-F1	Ma-F1	Mi-F1	Ma-F1	Mi-F1	Ma-F1	Mi-F1	Ma-F1	Mi-F1	Ma-F1	Mi-F1	Ma-F1
	Standard LOPS	()	. ,	()	. ,	()	()	55.7(0.54) 57.7(0.87)	()	()	71.6(0.43) 81.6(0.34)	70.0(0.30) 73.8(0.61)	69.6(0.25) 72.7(1.00)
BERT	MC-Dropout Entropy O2U-Net Random Probability Stability	91.2(0.41) 92.9(0.41) 90.3(0.47) 92.3(1.50)	83.1(0.47) 85.9(0.69) 80.9(0.47) 85.1(2.00)	80.4(0.23) 80.9(0.28) 79.0(1.00) 78.6(2.50)	78.0(0.54) 78.5(0.19) 76.8(1.50) 77.5(3.00)	80.4(0.47) 79.8(0.47) 76.3(0.35) 77.4(1.25)	80.0(0.42) 79.8(0.53) 76.3(0.65) 77.6(1.34)	55.2(0.74) 55.8(0.27) 56.1(0.18) 54.3(1.12)	56.7(0.42) 56.8(0.36) 58.2(0.35) 56.5(1.43)	43.4(9.84) 14.7(10.24) 78.4(0.94) 46.6(2.50)	69.0(0.41) 18.1(6.98) 8.70(7.31) 71.7(0.47) 22.3(0.50) 35.5(33.50)	68.0(0.21) 64.3(0.74) 71.1(0.36) 71.4(0.50) 47.8(23.50) 73.5(0.50)	68.7(0.26) 63.6(0.83) 71.2(0.75) 70.6(1.00) 47.9(23.50) 72.5(1.00)

• LOPS has stability

Experiment

					Coarse-grain		Fine-grained Datasets						
		NYT-0	Coarse	20News	s-Coarse	AGNews		Books		NYT-Fine		20News-Fine	
Classifier	Method	Mi-F1	Ma-F1	Mi-F1	Ma-F1	Mi-F1	Ma-F1	Mi-F1	Ma-F1	Mi-F1	Ma-F1	Mi-F1	Ma-F1
2.	Standard	90.1(0.17)	80.3(0.91)	77.3(0.27)	76.4(0.76)	75.4(0.64)	75.4(0.47)	55.7(0.54)	57.9(0.82)	77.2(0.36)	71.6(0.43)	70.0(0.30)	69.6(0.25)
	LOPS	94.6(0.36)	88.4(0.50)	81.7(1.00)	80.7(0.43)	79.5(0.86)	79.5(0.58)	57.7(0.87)	59.5(0.46)	84.3(0.54)	81.6(0.34)	73.8(0.61)	72.7(1.00)
	MC-Dropout	89.3(0.41)	79.3(0.45)	80.7(0.17)	77.7(0.24)	75.8(0.34)	75.0(0.41)	55.1(0.15)	56.7(0.61)	72.1(0.74)	69.0(0.41)	68.0(0.21)	68.7(0.26)
BERT	Entropy	91.2(0.41)	83.1(0.47)	80.4(0.23)	78.0(0.54)	80.4(0.47)	80.0(0.42)	55.2(0.74)	56.7(0.42)	43.4(9.84)	18.1(6.98)	64.3(0.74)	63.6(0.83)
DERI	O2U-Net	92.9(0.41)	85.9(0.69)	80.9(0.28)	78.5(0.19)	79.8(0.47)	79.8(0.53)	55.8(0.27)	56.8(0.36)	14.7(10.24)	8.70(7.31)	71.1(0.36)	71.2(0.75)
	Random	90.3(0.47)	80.9(0.47)	79.0(1.00)	76.8(1.50)	76.3(0.35)	76.3(0.65)	56.1(0.18)	58.2(0.35)	78.4(0.94)	71.7(0.47)	71.4(0.50)	70.6(1.00)
	Probability	92.3(1.50)	85.1(2.00)	78.6(2.50)	77.5(3.00)	77.4(1.25)	77.6(1.34)	54.3(1.12)	56.5(1.43)	46.6(2.50)	22.3(0.50)	47.8(23.50)	47.9(23.50)
	Stability	93.3(0.50)	86.5(0.50)	76.7(5.00)	75.4(5.00)	79.3(0.75)	79.5(0.35)	55.0(0.43)	57.0(0.19)	48.1(29.50)	35.5(33.50)	73.5(0.50)	72.5(1.00)
	OptimalFilter	98.3(0.27)	96.4(0.37)	94.7(0.37)	94.9(0.61)	89.4(0.46)	89.3(0.76)	76.2(0.21)	76.7(0.19)	97.4(0.71)	92.2(0.62)	87.6(0.37)	86.5(0.36)

OptimalFilter : remove all the wrongly annotated samples

Outline

- Introduction
- Method
- Experiment
- Conclusion

Conclusion

• Propose a method that considers learning order, LOPS, which can be used as a plug-in for text classifiers and weak supervision

• Learning sequence-based methods are more stable and effective than probability-based methods