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Supervised & Unsupervised Learning Challenge
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Weakly supervised learning
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Weakly supervised learning
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straightforward solution:high confidence
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related work

● epoch1
○ learn most of the representative instances

● other epoch
○ learn wrong instances

10

easy

representative



hypothesize

● learning order

○ be able to filter out most of  wrongly labeled samples
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LOPS: Learning Order Inspired Pseudo-Label Selection
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Algorithm of LOPS
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Algorithm of LOPS
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Algorithm of LOPS
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Algorithm of LOPS
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Algorithm of LOPS
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Algorithm of LOPS

S=1200

iteration=1(current)/10(total)

500

500

concat

200+500 = 
700

evaluate

confidence > threshold

add to D
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learning order
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Dataset

● New York Times
○ science、sports、music..

● 20Newsgroups
○ computers、baseball…

● AGNews
○ business、sports…

initial pseudo labels

string match
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baseline - label selection methods

● Entropy
○ uses entropy to compute uncertainty scores

● Probability
○ use the prediction probabilities corresponding to pseudo-labels in 

descending orde and select the number of samples

● Random
○ is similar to Probability, however use random select the samples

● Monte-Carlo Dropout (MC-Dropout)
○ Uncertainty estimates for probability score calculations

23



Query-Strategy - Least Confident
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Query-Strategy - Entropy
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class A: 0.93
class B: 0.05
class C: 0.02

class A: 0.55
class B: 0.35
class C: 0.1

class A: -0.104
class B: -4.321
class C: -5.6438

class A: -0.8624
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class C: -3.3219

class A: -0.09672
class B: -0.21605
class C: -0.11287

class A: -0.47432
class B: -0.53007
class C: -0.33219

-(0.09672+0.21605+
0.11287) = -0.4256

-(0.47432+0.53007+
0.33219) = -1.33658
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baseline - overfitting to underfitting (O2U Net)
1. pre-training 2. cyclical training

● compute loss of every sample
● update learning rate
● remove topK% samples with 

large loss from D

first learn easy sample,

then learn difficult sample

fixed learning rate

train

train

3.  training on clean data

D’=500

train
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https://ieeexplore.ieee.org/document/9008796
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baseline - Learning Stability

Learning 
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Experiment

● standard : all data with noisy
● LOPS : strategically select representative samples
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● metric
○ Micro-F1
○ Macro-F1



Experiment

● LOPS are strategic 
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Experiment

● MC-dropout : probability score

● LOPS : learning order  30



Experiment

● LOPS has stability  

● high standard deviations are highlighted in blue 
● low performances are highlighted in red
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Experiment

OptimalFilter : remove all the wrongly annotated samples
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Conclusion

● Propose a method that considers learning order, LOPS, which can be used as a plug-in 

for text classifiers and weak supervision

● Learning sequence-based methods are more stable and effective than 

probability-based methods
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